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This paper takes the form of a review including some original contributions.
Analytic higher energy derivative expressions for configuration interaction
(CI) wavefunctions have been used to obtain the corresponding energy deriva-
tive formulae for multi-configuration self-consistent-field {MCSCF), general
open-shell and closed-shell restricted Hartree-Fock (RHF) wavefunctions by
explicitly imposing the variational and orthonormality conditions on the
molecular orbital (MO) space. The general structure of the reduction pro-
cedure used here is thus

CI > MCSCF - General RHF - Closed-shell HF.

The equations expressing the correspondence among correlated and RHF
wavefunctions have been presented to interrelate various conditions and
definitions involved in the energy derivative expressions. Practical formulae
for the energy derivatives of the above mentioned wavefunctions up to fourth
order are explicitly given.
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1. Introduction

The energy derivative expressions for a configuration interaction (CI) wavefunc-
tion shown in the preceding paper [1] are general formulae in the sense that
there are no restrictions involved therein except the variational condition on the
CI space. We may take advantage of this fact to obtain expressions for energy
derivatives in the general framework of self-consistent-field (SCF) molecular
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orbital (MO) theory. A fruitful avenue to reliable wavefunctions is the multi-
configuration self-consistent-field (MCSCF) method [2, 3] in which the CI and
MO coefficients are simultaneously optimized by the variational principle. Recent
advances in the quadratically convergent MCSCF and complete active space SCF
(CASSCF) methods have made it possible to obtain MCSCF wavefunctions in
a more efficient manner [4-24].

The format for this paper is primarily that of a review, but also presenting some
new insights concerning the structure of analytic energy derivative expressions.
Here we present a formalism for MCSCF energy derivatives by taking into account
the correspondence with the more general CI formalism. We also show that
derivative expressions for the MCSCF energy may be easily simplified to obtain
energy derivatives for the restricted Hartree-Fock (RHF) wavefunction.

In the following section the derivative results for the CI wavefunction in the
previous paper [1] are briefly reviewed. The electronic energy expression and the
variational condition for the CI wavefunction are first described. Second, several
variables and matrices involved in the higher energy derivative formulae are
explicitly defined. Then the energy derivative expressions for the CI wavefunction
from first to fourth order are given in a manner symmetric with respect to the
differential variables. Also shown are unambiguous expressions for the first,
second and third derivative CI Hamiltonian matrices.

In Sect. 3 the derivative expressions for the orthonormality condition on the
molecular orbitals within the SCF formalism are carefully examined. The aug-
mented S matrices, ¥, are introduced to explicitly show linear relationships

among elements of the U matrices, which are related to the derivatives of the
MO coefficients.

The variational condition on the MO space and the derivative forms of the
orthonormality condition are explicitly included to yield energy derivative
expressions for the MCSCF wavefunction from the more general CI formalism
in Sect. 4. It will be demonstrated that the introduction of these two (variational
and orthonormality) conditions greatly simplifies the derivative formulae for the
MCSCF wavefunction and substantially reduces the amount of work involved
in the practical applications.

Starting from equations suitable to the MCSCF formalism, energy derivative
expressions for the general open-shell SCF wavefunction will be pursued in Sect.
5. For one configuration SCF wavefunctions the terms involve the CI coefficients
and their derivatives may of course be dropped. Furthermore the diagonality of
the one-electron and two-electron reduced density matrices significantly simplifies
the entire formalism involved in the higher energy derivatives for general open-
shell wavefunctions.

In Sect. 6 energy derivative expressions for the simplest and most frequently used
case, the closed-shell SCF wavefunction, will be derived to show the effectiveness
of the correspondence manipulation. There the one- and two-electron density
matrices have elements with constant values, and consequently the energy deriva-
tive formulae become even simpler. The reformulation of energy derivative
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expressions from both the MCSCF and the open-shell SCF formalisms will be
presented.

2. Review of energy derivatives based on the CI formalism

Let us briefly review the CI energy derivative expressions before we discuss the
correspondence among MCSCF, RHF and CI formalisms.

2.1. Wavefunction, electronic energy, and the variational condition [25]

The CI (or MCSCF wavefunction), ¥, is constructed as a linear combination of
electronic configurations @,

|‘I’>=§CI|®1>- (2.1)

The electronic energy of the system may be expressed in terms of a configuration
basis, or molecular orbital (MO) basis, or atomic orbital (AO) basis,

E =Y GCHy (22)
J
:_Z Yishii + Z Fijkl(ljlkl) (2.3)
- Z vihuv+ Z rp.Vpa'(au’lea-) (24)
pnypo

We assume that the indices using capital letters I, J denote the electronic configur-

ations, the roman letters i, j, k, I the MO’s, and the greek letters the AO’s. The

Hamiltonian matrix elements H,; may be defined using the coupling constants,
v} and T'}},;, and MO mtegrals h; and (ij|kl),

Hy=(®;|H[®))=Y yi/hy+ z T ia(if | k). (2.5)

The relations between integrals and density matrices, ¥ and I, in the AO and
MO basis are as follows,

=Y CLClh, (2.6)
v
(k)= ¥ CLCLC;Colur]po), (2.7)
nrpo
—Z C CVY!ja (28)
,u,upo' UZ](IC C]C C rt]kl’ (2.9)

where the one- and two-electron (reduced) density matrix elements [26] are
defined by

71] =% CICJ')’E’ (210)
and
= Z CICJrz]kI (2.11)

The variational condition on the CI space is given by
Y (Hy —8,E)C; =0. (2.12)
J
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2.2. The Lagrangian, Y and Z matrices and their derivatives

The Lagrangian matrix X [2,27] and the derivative Lagrangian matrices are
defined as

Xim =z_ Vit +2 Z T (i | K1), (2.13)

X = z Ymh&+2 z L | KD)°, (2.14)

X = z y,,,,h“”+2 % T (i | KD, (2.15)

X = z ymjh“b°+; % L (i | K< (2.16)
j

The matrix Y [28] which relates to the second order variation of the CI energy
with respect to the MO’s and the derivative Y matrices are expressed as follows

Yimjn = ’Ymnhij +2 Z {ankl(ij l kl) + zrmknl(lkl]l)}s (2‘17)

Y:mjn Ymnhy+22{ankl(U!kl)a+2kanl(lk|]l) } (218)

Ytizrﬁjn = Ymnh;b +2 z {ankl(l] | kl)ab + 2F mknl(lk l].l)ab ' (2'19)
kil

Furthermore, it is convenient to define the matrix Z and its derivatives for later
use,

Zimjnko = 4 Z {anol(ij l kl) +Fmonl(ik|jl) + leno(il l ]k)}s (2“20)
zmjnko - 4 2 {anol(l] | kl) +Fmonl(lk|_ﬂ)a + 1—‘rnlno(ll I ]k) } (221)

The transformed one- and two-electron derivative integrals in the MO basis
appearing in these equations are given by

a i j ah v
h.-j=§V CuCy s (2.22)
o ; &h,
hi; ZC c, é—al; (2.23)
3 h,,
hi = Z C.C m (2.24)
4h !
abed __ — i J 225
h z C “daabacod’ ( )
(i)kD*= ¥ CLCJ;CF’:CL%‘{Q—”@, O (226)
nrpo
: 0
(ijlk*® =¥ CLcLckct —%"”—;5"—), (2.27)
urpo
& (uv|po)
ave i Ckel ——— 228
(ij| k) Mzwc e e Taval (2.28)
Gl =y cLoicicy Surlen) (229)

da dbdc ad

Hypo
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2.3. The U matrices

Finally, we introduce the U matrices [29] (which express the changes in the
molecular orbitals with respect to nuclear displacements) for future use. They
are related to the derivatives of the MO coefficients as

9Cs T =Y UnCTL (2.30)
aZCi .
=y UsCr, 231
da ob ,Z,.: ( )
FCh
S _y gerecn, 232
da ab dc % ™ (2:32)
4 i
T Cu _yyameicm, (2.33)

dadbaocaod m

2.4. First derivative

The first derivative of CI energy [27, 28, 30, 31] is given by

aE aH,
==y c,c,—~ (2.34)
oa Fis oa
ZZ yijhg+§lfﬁk,(y|kl)“+2 Z Ui Xim. (2.35)
iy iy im

2.5. Second derivative

The second derivative [32, 33] includes not only the derivatives of molecular
orbitals but also the derivative of CI coefficients as follows.
°E BZHIJ aC;0C;

=Y C,C -2y ——(H,;—-6,E 2.
da ob IZJ ™ 5a ab %aa ab( v =duE) (2.36)

where the first term in Eq. (2.36) may be expressed in the MO basis as

% CICJB ab % 71]hab+ Z Fijkl(ijlkl)ab+2 Z U?erim
+2 z (U Xou+ Un X)) ¥2 3 Y Uy US Y e (2.37)
im jn

2.6. Third derivative

The third derivative of the CI energy may be written in the yconﬁguration descrip-
tion as

8°E O Hy,
=Y CC,——-
da b ac ,2, ™ 5a b ac
r23.c,3 (10 0 0,7y 1, Ty
I; 7 \da 9boc 9b dcoa dc dadb
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[ac, acj<aH“ aE) aC; aCJ<aHH aE)
— T\ Y—=6y— |t — —OoT
da ab \ ac ac ab dc \ oa da

3aC; aC, (aH,, aE)}
+* D L% ¥ A
dc da \ ab ab

where the first term may be explicitly given as

& Hyy
GC =¥ yh2+ ¥ Tl KD +2 Y UZX,
% ! ]aa 6‘b dc }’J: yj 7 ijzkl jkl(l]l l) Z:n im sz

+2 3 (UL XL+ Un X+ Un xih

2%
7

(2.38)

2L (UL X+ Un X i+ Ui X i)
+ 2 Z z ( Uiam U]bn Y;:mjn + Ulbm chn Y?mjn + Ulcm th'ln Yf')mjn)
im jn

+2 Z Z Z U?m Ufn Ulccozimjnko- (239)

im jn ko
Here, we defined the modified Lagrangian first derivative matrices X' by
combining the Lagrangian derivative (2.14) and Y matrix (2.17) as

XE::I] = X;zm +Z U]['In Yimjn- (2.40)
jn

The last term including the matrix Z in Eq. (2.39) may be expressed as
2 z Z Z U?m U_;Jn Uiozimjnko

im jn ko

=8 Y LY (Ui Un Ui+ Ul Ui Ul + U Ui URe) X T (| K. (2.41)
1

im jn ko

2.7. Fourth derivative

The fourth energy derivative for the CI wavefunction is given by

3*E
da ab ac od
o*Hy; (ac, #H,; aC;, &°Hy
=y C,C——H oy, v | — L T T
Izj ™ 5a abacad ; I; da obacad ab dcod sa

G Py 90, SHy )
ac ad 9adb  od daabdc
0C; 3C, { 9 Hy, *E\ 8C;aC, (& Hy, 0*E
Z — -0 )+t—— — =0y
oa dob \ocod dcod da dc \8bad ab od
(SGOG 7y T 9C,0G(THy , T
da ad \obac “aoboc) ob ac \sasd " éaad
3G "_QJ<‘92HH_ &'E ) LG a_<;1<62Hu_ IE )]
ob ad \sase “aasc) oc od \sasb “oadb

Iy
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_22

7

FC 8C 3G IC 3G BZCJ)
+ + Hy,-8,E). (242
<6a 3b acod dadc dbod dadd abac (Hy-3uE). (242)

The first term including the fourth derivative of Hamiltonian matrix elements
may be expressed as follows

3*Hy;
cC,———————
,ZJ "™ 3a abacod

.. i d
=3 ysh§+ T Ly D +2 % Ui X
i ijki im
bed d b
+2 Y (Ui X0+ U XU+ US Xl + URPXED
+2 2 (U X+ Un X+ uin X+ U x50
im

+UNXS - Ul x )
+ 2 Z 2 ( U:lnl: U]c: + U?rfl U]bnd + U?,Z U]bnc) Yimjn

im jn

+2 Y (Un X+ Uy X it + U X i+ UG, X 00)
a b d a bd a d by

+2 Z Z ( Uim an Yl?mjn +'Uim Ufn Yimjn + Uim an Yirf’ljn

im jn

b c ad b d ac d ab
+ Uim an Yimjn + Uim an Yimjn + Ufm an Yimjn

+2 Z z z ( U?m Ufn ?coz;imjnko + U?m U;n Uio ?mjnko

im jn ko
+ Ufm Ujdn UZoZ?mjnko + U?m U]"In UioZ?mjnko)
+8Y LY Y (UnUnUi,Up+ U Ui, Ui, Uy,

im jn ko Ip
+ Ui Un U UR)T sy (i Kl (2.43)
where the modified Lagrangian second derivative matrices are defined by
X = Xin+ L (UL Y innt Ui Y i) ¥ L L U UL Z i (2.44)
jn jn ko

2.8. The derivatives of the CI Hamiltonian matrix elements

In this subsection the derivatives of the CI Hamiltonian matrix appearing in
preceding subsections are explicitly defined. We first introduce the ‘“skeleton”
derivative Hamiltonian matrices

=X ¥ by X (i D)” (2.45)
ij ij
HZ =Y yi hi’+ ¥ T (i k)® (2.46)
ij ijkl

HE =3 i i+ ¥ Tiualij| kD)™ (247)
ij

ijkl
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and the “bare” Lagrangian matrix [28], X, and its derivatives,

Xin =1 Vb2 % T ialii | KD
J J
x5 =Z 'y{njjhli;—'—z % an]jkl(ijlkl)a
J J
X5 =% yoghi+2 % T (i | kD).
J J

Similarly, we also define the “bare” Y matrix and its derivatives as

Yhn=Yoh;+2 %{an’nkz(ij |k + 2T 5, ik | 1)}

Yingn = Ymmh§+2 % {T pamsa (i | K1)* 4 20 ik | j1)°}.

(2.48)
(2.49)

(2.50)

(2.51)

(2.52)

There are the following relationships between the “bare” and *“‘parent” quantities

for the Lagrangian and Y matrices;

Xim = Z CICJX{;L,
i)

X = Z CCX fi.‘:
I

Xw=3 C;CX3",
7

Yimjn = % CICJY{rJnjm

a e
Yimjn - Z CICJYimjn'
14

(2.53)
(2.54)
(2.55)
(2.56)

(2.57)

Using these definitions, the derivatives of the Hamiltonian matrix elements may

. be explicitly expressed as follows

dH.
Y=H}+2Y ULXE,
a im

8*Hyy
da ab

=He+2Y (USXE+ULXE +Ub X5

+ 2 2 z U?m U]bn Yiltijn
im jn
FH, ‘ .
S H 2T (U X bt U X+ U X0+ U X3
da db dc im

+ULXE + UL XE + U, X I
2y S URUS,+ U UL+ UR U Y,

im jn

< a b
+ UL UMY+ U Ui Yt t Ui U Y}

(2.58)

(2.59)
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+8Y Y Y (U UnUs+ Ub U UR,

im jn ko

+ U UL UR) S TR o(if | Kl). (2.60)
!

3. Derivatives of the molecular orbital coefficients

Let us describe the properties of the U matrices defined in Egs. (2.30)-(2.33)
before making a reduction in the formulae of CI energy derivatives to the special
case of SCF wavefunctions. Since the U matrices are related to the derivatives
of the MO coefficients, they are closely connected to the condition from which
the molecular orbitals are determined in the SCF procedure. The equations
obtained from the differentiation of the SCF variational condition are called the
coupled-perturbed Hartree-Fock (CPHF) equations [29, 30, 34] and solving them
produces the derivatives of the MO coefficients.

While one may use §C},/da instead of the U® matrix to derive the energy derivative
expression [46], formulae based on the latter are much simpler to derive and it
is easy to remove the redundancy due to the orthonormality condition of the
MO, i.e.,

732

where S, is an AO overlap integral.

A series of differentiations of Eq. (3.1) gives the self-dependency of the U/ matrices
[29, 30, 34] and provides the following very useful expressions:

Ui+ Uj+S5=0, (3.2)

U+ U+ =0, (3.3)

U+ U+ =0, (3.4)

U;bcd + U;bcd +y;bcd — O, (35)
where the augmented S matrices, &, are defined by

S =S+ L (U, Up+ Uy Uty = S Sty — S St), (3.6)

S =8P +Y (UmUs,,+ U U, + US UL, + UL U,
+URUS,+URUS,
=Y (SinSim+ Spn S+ S Sh, + S5aSh, + St S5, + She 82,
+ X (SiuSiuSint SimSSent SimSyuSimn+ oS0 S
+ 85 S St S5 SeSh,), (3.7)
y;bcd — Sgbcd

(UL U+ Ui Ul + U U+ U U+ Ui U,
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d y1b bed b
+ U_‘]zrft Ul'm+ Ulrcr‘x U]"lm+ Ujr(r:ld U:'lm
Y (UBUR+ UmUiat Un U+ U U+ U U+ U Uss
m

L ASI St S Simt St i+ Sy’ Siont Sirt' St Syt S

bed bed
+S1r$1 S;'zm+sjrf1 S?m
~ L (SiaSimt SimSin+ SinSin+ SimSimt SinSimt SimSim
m

+ 98, (3.8)
The augmented Q matrices, 2, in Eq. (3.8) are given by
95 =¥ (SIHO5h+ im0+ SO+ Sia 0t Siah+ Siadl

+85.0% 1 Sbe 02 + S 0% + St 0% + S0 + S 0%)
+ Y [(S% — 0% (S5, S8+ 85,58) + (8%, ~ 0% )(SE, 82+ 55,52)

+ (S?ndn - @ﬁldn)(sfms;n + SmeSICn) + (Sl:rfn - @?:n)(slzzms;in + S]"lmstiin)
+ (St = O} (Sin St S5mSi

(8%, — 05 ) (SimSi+ SinSt)] (3.9)
where

Oron =2 (SmacS e+ oS- (3.10)
x

The transformed derivative overlap integrals appearing in these equations are
defined by

S§-=:LV CLC’;%, (3.12)
sgbzgc;c{,%. (3.13)
S;bczgp CLC;‘»%(;S;;_C’ (3.14)
gabed :HZV CLC’;"&%%- (3.15)

It should be noted that the matrices & involve not only the transformed derivative
overlap integrals but also the U matrices of lower orders. In the first order relation
(3.2), ¥5 simply becomes S7j.

4. Energy derivatives for MCSCF wavefunctions

Given the general formulae for CI energy derivatives as reviewed in Sect. 2, we
can easily perform the resolution to the case of SCF wavefunctions by introducing
the additional variational condition used to determine the SCF wavefunctions.
In this section, we discuss the MCSCF energy derivatives.
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4.1. The electronic energy and the variational condition for the MCSCF
wavefunction [2-24]

The energy expression for MCSCF wavefunctions is formally the same as for
CI, namely,

EMC=Z 'Yij'hij‘+§CIFijkl(U|kl)- (4.1)
i i

One of the conditions used to determine the MCSCF wavefunction (2.1) is the
variational condition for the configuration space; this has already been stated in
Eq. (2.12). The other condition is the variational condition for the determination
of optimum molecular orbitals. This condition may be represented as the sym-
metric property of the Lagrangian matrix defined in Eq. (2.13),

X;— X, =0. (4.2)

When this condition is satisfied, the derivative expression may greatly be sim-
plified, as will be demonstrated below.

4.2. First derivatives

The energy gradient for the MCSCF wavefunction [35, 36] may be derived from
Eq. (2.35) by reference to the relations (3.2) and (4.2),

o EMC
da

=T kit T (| KD)* = L S Xim. (4.3)
j ij im

4.3. Second derivatives

The second derivative of the MCSCEF energy [37-42] may be obtained combining
Egs. (2.36) and (2.37),

82EMC "
= shi + 2 L ya(ii| Kl @~ y?rZXim
oa ab %:‘)’j ij ijzkl ]kl(yl ) gn
+2 Z (U:lme)m—‘_ U?mX?m)_*-z Z Z U;lm U]bn Yimjn
im im jn
3C; 9C; M
=2} ——(Hy-863E"). .
%aa 6b( P& 1r ) (44)

Here, again Egs. (3.3) and (4.2) were used to re-express the term involving U®
in terms of ¥*. In order to evaluate the second derivative of the MCSCF
wavefunction, one should determine the first derivatives of the molecular orbitals
and CI coefficients by solving the coupled-perturbed multi-configuration Hartree-
Fock (CPMCHF) equations [28, 38-46]. The CPMCHF equation may be derived
by differentiating the variational conditions (2.12) and (4.2) for configuration
space and molecular orbital space, respectively.
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4.4. Third derivatives

The third derivative of the MCSCF energy [46, 47] may be obtained from the
CI third derivative expressions (2.38) and (2.39). For this purpose it is necessary
to introduce the first derivative form of the variational condition (4.2),

X, 90X,
————==0. (4.5)
da da

The derivative of the Lagrangian matrix in Eq. (4.5) may be expressed by using
the definitions (2.40) and (2.48) as

3X; aC
o XY Ut X +2 Y, C—2 X5, (4.6)
oa * 173 aa

In Egs. (2.38) and (2.39), those terms potentially including the second and third
derivatives of the MO coefficients are

2T Ui Xim +2 L (Ui X B+ Ui X0+ URXED

(4.7

(a o azH,,+a_C_, azHH+<_9_C_, azH,,).

+2Y C — -
; 12 da abdc ob ocda oac oadb

J
Combining Egs. (3.7) and (2.59) with Eq. (4.7) the second and third derivatives
of the MO coefficients may be eliminated. Most importantly the terms involving
the second order U matrices are manipulated as follows,

aC
2y U?,ﬁ[XEfn]—Z UinXii+2 % CI—JXi’,ﬁ] 4.8)

im k 7 ac
=27 U2 22 (U5 X + Ui X ‘ (4.9)

- = im ac k ki<*km km <X ki -

0 Xim . .

=-X V?fn’[Tc =2 (UkiXim + Ukaki)] (4.10)
im k

The definition (4.6) is used for the first equality from Eq. (4.8) to Eq. (4.9) and
the relationships (3.3) and (4.5) are introduced for the second equality to get Eq.

(4.10).
Finally, the third derivative expression for the MCSCF energy is found to be

83EMC N ,
= i‘h?' C+ F,—- ij kl abe
da gb ac % Yoy i]z,c:, gra(5 D)
-3 X.-m[sz’,zc 2% (S St SK St ST St

im k

+2Y (SiSoSi+ ShSmSi+ kaS“mlSZz)]
kl
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+2 3 (Ui X+ Ub Xin+ Ui X i)
im
b b
+ 2 Z Z ( U?m U]bn Yfmjn + Uim chn Y?mjn + Utcm U;n Yimjn)

im jn

+8 Y LY (UnUnUiet Us U, Uk,

im jn ko

+ chm UJ"ln UZO) ZI anol(ijl kl)
-2 [V?,ﬁ(XE;]—Z Uikai>+V?;(X5$]*Z UZkai>
im k k

v (X1 Uz,,.xk,-)]
k

C <
+23 G20 By -3 X2 T (ULXE+URXE)
u a im im

im jn

C a c
+25 029 -y gx g2 (UG XE+ULXE)
4 im im

+ 2 z Z Ulcm qun Yllrjnjn}

im jn

C a
#2320 -y gEx D2 5 (URXE+ UBXE)
1e c im im

25 Y U UL, Y:,{,,-n]

im jn
+22[&8_C_1(6Hu_ BEMC>+8_98_CJ(8HH_ aEMC)
TLda ab \ dc 7 5e ab 3¢ \ da 7 sa
aC; 0C; (aHU aEMC>]
+— —Sy——1 |. 4.11
dc da \ 3b 7 ab ( )

4.5. Fourth derivatives

The fourth derivative of the MCSCF energy [47] may be derived from the
corresponding expressions (2.42) and (2.43) for the CI wavefunction. In these
equations the terms that potentially include the third and fourth derivatives of
the MO coefficients are

23 U Xim +2 L (Ui X+ U XS+ U X0+ U X5
im im

(& SHy 9C, 8°Hy  9C, &°Hy 3C; a3HU>
da dbdcod ob dcodoa oc 3d daob od sadbac)
(4.12)

Combining Eqgs. (3.8) and (2.60) with Eq. (4.12) the third and fourth derivatives
of the MO coefficients may be removed in a similar manner as for the third

2L G X

J
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derivative case. Most importantly the terms involving the third derivative U
matrices are treated as

8C
25 U?,Z“[XES,J—Z Ul X423 cl—fx,-f,z}
im k [ ad
3C -
) y;‘,ﬁﬂ[x&,ﬁ’ﬂ—; UZka,-+2§ C,;;’X,-’,ﬁ,]. (4.13)

In deriving this relationship the symmetric property about the exchange of the
indices i and m through Eq. (4.5) is utilized.

A final expression for the MCSCF fourth energy derivative may be written

84EMC bed
abed s abc
sagbocad L i T Luulilk)
Y y

-3 3, | 2 (2 S St S S SO
im k

—2Y (S S+ Sk S+ Sa Sha)
k

P23 (UR U URUS + U U + 95
k

+2 Y Y (URUi + U Uil + Uin Usn) Vi
im jn

+2 T (U XS+ Ui X0+ U X9+ U X0+ Ui X300
im

+URXY

+2 3 (U X! + Ul X i + U X 00" + Ui X0

i a b cd a bd a d b
+ 2 Z Z ( Uim an Yimjn + Uim U]cn Yimjn + Uim an Yir;:zjn

im jn
¢ b d yra c d ~yyab
T U?m an Y?rgjn + Uim an Yirszjn + Uim an Yimjn

+ 2 Z Z Z ( U?m U]bn UckoZ?mjnko + U?m chn Uio ‘izmjnko

im jn ko
+ Uzcm U]dn U;ozfmjnko + U(tjm U;'In UioZ‘i:mjnko)
+8Y Y Y Y (UL Un Ui, Ui+ Ui U5 UR Ul
im jn ko lp
+ U U Ul U unp (i kD)
- [ (a-p vtoxa) + o (Xt -3 Ut )
im k k

+9’?;‘,’.“(XE-,Z]—Z Uzmxki) +9’?,ﬁ"(XEf.3—Z ux)]
k k
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0C; ¥Hy oG, 8Hy  oC, 3°Hy
3a abacad  ob ocodoa  oc od 9adb
oC, °H|
L0 )4 )

yay(i

od 9aabdc
9C; 0C, [ ¥ Hy 9> EMC
22 DU i
da adb \dcad dcod
96 Q_Cg(azHu 2EMC>
da dc \obad Ou ab od

aC,aC, O Hy 2EMC>
8a ad \ab dc 7 ab ac

aC, aC](a Hy azEMC>
ab dc \da dd da ad
aC,aCJ<a Hy 2EMC>
ab dd \dadc T da ac

aCIaCJ(a Hy azEMC>]

ac ad \aaob " daab

)y < *C; 3°Cy N 3*C; 8°Cy N °C; 3*C,
dadb dcdd dadc 3bad daad 9bac

)(HIJ - SIJEMC)’

(4.14)
where

OHY
Habc y;zchiI;L
da ab ac ;n i
F2Y(UBXT + Uk X+ Usaxiy +us, x 9"

+ULXE + UL XE")
T2y YU U+ Ui U+ U UL Y i,
im jn
+ UL UL YR+ UL US Y + US, US Y
+8Y Y Y (UL UNUG+ UL U U

im jn ko

+ Uzcm Uko)zrmnol(y.lkl)' (415)

5. Energy derivatives for general RHF wavefunctions

When the SCF condition (4.2) is satisfied, one may evaluate up to the (2n+ 1)th
energy derivatives by solving the nth order coupled perturbed Hartree—Fock
equations, as we have shown in the previous section for the MCSCF wavefunction.
This fact is known as the Wigner’s 2n + 1 theorem [46, 48, 49]. Table 1 illustrates
the derivatives of variational parameters necessary to calculate the derivatives of
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Table 1. A classification of derivatives of variational parameters required to evaluate energy derivatives
for CI, MCSCF and RHF wavefunctions.

CI MCSCF RHF
MO/CI Coupled

MO space CI space space MO space
Energy E § C,
First 8E First-order o C.,G ci
derivative  da CPHF U“
Second & E Second-order | First-order First-order First-order
derivative  da ab CPHF U® CPCI CPMCHF CPHF
Third PE Third-order | 3G « 9Cr Ue
derivative  da ab ac CPHF U da > da
Fourth & E Fourth-order Second-order | Second-order Second-order
derivative  da ab ac ad CPHF U*<% | CPCI CPMCHF CPHF
Fifth ’E Fifth-order (R ab R Ueb
derivative  da abacad de | CPHF U®% | 3a9b *da ob

energy for various wavefunctions. The RHF wavefunction described by the
one-configuration SCF method may be treated as a special case of the MCSCF
wavefunction. In this section we present the energy derivative expressions for
the general open-shell SCF wavefunction by reformulating the MCSCF derivative
expressions.

5.1. Electronic energy and variational condition for the general open-shell SCF
wavefunction [50]

The electronic energy for the general open-shell SCF wavefunction [51-53] is
given by

EMF =2 fihi+ Y {ay(ii] i) + By (i | )} (5.1)
i ]

This energy expression may be obtained from the MCSCF energy formula (4.1)

by imposing the following relations on the one- and two-particle density matrix

elements,

Vi = 25,»J»f,- (5.2)
and
Tyt = 880t +3( 88+ 848jx) By (5.3)
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By reference to the Lagrangian and generalized Lagrangian matrices [52, 53] for
the general open-shell SCF wavefunction

£y = fihy + ¥ {aa (i | k) + Bu (ik | jk)} (5.4)
and
é‘f:{j :ﬁhij +§ {alk(ljfkk)‘i'ﬂlk(ikljk)}, (5-5)

the following relationships with the Lagrangian and Y matrices for the MCSCF
wavefunction are easily found,

X =2¢;, (5.6)
and

Y iur = 28385 + 24 (5.7)
where we define the & matrix as

o g = 20 (i | K1) + Br{ (k| j1) + (il | jk) }. (5.8)
It is convenient to note that

Gi=L (5.9)
and

ey =4y (5.10)

Using the Lagrangian matrix defined in Eq. (5.4) the variational condition for
the general RHF wavefunction is expressed as

g;—€; =0. (5.11)

The energy derivative expressions for the general open-shell SCF wavefunction
may be reformulated from the corresponding equations for the MCSCF wavefunc-
tion by appropriately imposing conditions (5.2)-(5.11). All terms involving the
CI coefficients and their derivatives should of course be dropped.

5.2. First derivatives [35, 36]

The energy gradient is straightforwardly derived from Eq. (4.3) using the condition
(5.11) as

QERHF . e il aona .
=2 X fhi+ ey (ii] )"+ By(ij| i)} —2 L Sgey. (5.12)

6a_

3.3. Second derivatives

A symmetric formula for the second derivative of the general RHF energy [52, 53]
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may be easily obtained from Eq. (4.4)

02ERHF
=2 R +Y {ayii] ) + By (i)} -2 % ¥ ey
da db i ij ij
+4Y (Ugep+ Ubel)+4Y Y UsURN(8ulln+ o jaa) (5.13)
i ij Kl
where
s‘i}-=ﬁh§}-+§{a,-k(ijlkk)“+ﬁ.-k(ikljk)“}. (5.14)

The U® matrices in Eq. (5.13) may be obtained by solving the CPHF equations
[28, 34, 52, 53] based on the general RHF method which may be derived from
the relation (3.2) and the first derivative form of the variational condition,

de;  0g;
2% 2%y, (5.15)
da da
The first derivative of the Lagrangian matrix in Eq. (5.15) is given by
9Ey a a gi a a
a—aj= Eij+§k: (Uil + Uigea) +% Uia jua (5.16)

and this equation corresponds to Eq. (4.6).

The direct differentiation of Eq. (5.12) with respect to a nuclear coordinate “b”
also gives a second derivative expression. The result, however, does not turn out
to be symmetric about “a’” and “b” as presented in Refs. [52] and [53]. One has
to use the CPHF Eq. (5.15) in order to prove that both expressions are equivalent.

5.4. Third derivatives

The third derivative of general open-shell RHF energy [54] may be obtained
from the MCSCEF third derivative expression (4.11),

3 RHF
d

sadboc > Z,.f"h?fbc*'lzj {o (i | ji) > + By (if | i)}

-2) 8ij[5?}b°—22 (SE S+ Sk S+ St S
i k

+2% (S5SpSu+ ShS5SH+ kasﬁsiz)]
+4% (U;;»e]t-’,-c-l- U%ef,-“-k Ufje]'-'ib
ij

+AL T (URURL + URUGE + URUGEE)
ij
+43 % (UiUuA G+ Uf-}- Ui+ Uy U;tﬂ?ﬂd)
G Kl
+ 4 z 2 Z ( U?m U]bm ;l + U?m U]Cm zl + Ufm U;'Im Ulbcl)

ij ki m

X [2tm (i | K1) + Bou{ (ik | j1) + (il | jK)}]



Higher order energy derivative formalisms 111

_22 5”?’ 53‘"’% (Uliif;'cj_ Uij&‘ik)'*‘% Uil&«jiklil
ij L

_22 Vfi-c 8;"’% (UZiﬁq— Ulacljgik)—'_% UZtJdﬁkz]
Iy L

—22 9% 8§+%(Uii§;;j_UZj8ik)+% Uﬁ,&fﬁk,] (5.17)
y L
where
e§b=f,-h;;”+§ (i | kk)® + Bu (ik | jk )} (5.18)
Ly =S +L { (i kk)* + By (ik | jk)*} (5.19)
A g =20, (i | k1) + B{ (ik | j1)* + (il | jk)°}. (5.20)

5.5. Fourth derivatives

The fourth energy derivative expression for the general RHF wavefunction may
be derived from the MCSCF fourth derivative formula (4.14) by using the
correspondence equations in subsection 5.1 and following relationships

nga]=281['ia]:2l:5jai+§ Ul jz:k+% UZI‘£¢ijklj|; (5.21)
ngab] = 25,[-iab]= Z[Ejaib“‘% (Uy T+ U%fﬁ:)*"% (UZz&ff}kﬁ Utbclﬂ?jkl)
+ ¥ UiUmi[2a;,(ik|Im)+ B;,,{(il | km) + (im | kI)}]
kim

+ Y UinUil20,, (il km) + B, {(ik|Im) + (im| kI)}]

klm
+k}IZ Uime’m[Za,-m(ijlkl)+/3jm{(iklﬂ)+(illjk)}]] (5.22)
X=2e8", (5.23)
Y =280 +24%, (5.24)
2 Z Z Z U?m U]bn UioZ:'imjnko
im jn ko
=4 Z Z z ( Uiam U]bm Ulcd+ U?m U]Cm UZI+ Uzcm ch‘lm Uil)
ij klm
X [2a,m iflk1)? + B{ (ik| 1) + (il jk) 4}, (5.25)
8LEL L (Ui U Ui Up+ Ul U Uk Ul + U U Uk Ui )T e (3] K1)
im jn ko Ip

=4YY ¥ (UL U UL UL+ UL U; U Us+ U U Ut US,)

ij kl mn



112 Y. Osamura et al.

X [2 @ (3| ) + B i (i) j1) + (il | j)}], (5.26)

where
““—fh“l”+§ {ora (i | kK)*° + Bu (ke | jk )™}, (5.27)
;f;’"—ﬁh?f@{a,k(ijlkk)“”+ﬁzk(ik|jk>"b}, (5.28)
A =20 (if | K1) + Bu{ (ik | j1)*® + (il | jk)**}. (5.29)

The final expression of the fourth derivative of the general RHF energy may be
given as follows:
4E RHF

_—=2 ,'h?,-de'f’ (i ] i abed (i i abed
saabaced 22t %{“1("111) By (ij| 5)**'}

-2 Z & [Siajbcd -2 Z (Sabc bcd Scda dab k)
ij

—2Y (SRS + SuSH+ 83 8%)
k

+2Y (URUR+URUR )+92“b“’]
k

+HAY Y (URUR+URUR +UR U
j k
+HAY Y (UP UG+ U U + U U sty
§ Kkl
+4Z(Uab [;Cd]+ U;c }[Ibd]_‘_ Uad [bc]+ Ul,;c E[ad]

+ U.b.dg[..ac] + UCd E[..ab])

+4Z(Ua bcd+Ub cda+Uc dab+Ud abc)

5 €ji
Cd ﬂ c bd be
+43 Y (Ui kdj ikUjkff'} +U ;k{:;

ik
kad

USls“ + U UL + UL ULLE™)
+43 Y (U5 Ukwﬂ,,kﬂr UsUyston+ UsUtsA 5

ij ki
+ UL UL+ U Un A+ UsUnisdin)
+4ZZZ(U U]mekl+U?mU]cm +Utch]amUl)

ij kIlm
><[2am1(ij|kl)d +Bmz{(ik|ﬂ)d+(il|jk)d}]

ij ki m
X (20 (i | kD) + Bl (i | j1)* + (i | jK)*}]
+4 Z Z Z (U U_;im Ukl+ U?m Ufm ?d+ U?m chm UZI)

ij kI m
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X [20 (i | KD)® + Ba{ (ik | j1)® + (il | jK)"}]
+4 Z Z Z ( Ugn U_;'Jm Ull:l+ U;lm Ujbm Uzl+ Uf)m Ujdm Zl)

ij ki m
X (20 (i | KD+ Bl (i | 1) + (il | jK)°}]
+4Y Y ¥ (UsUb Ui, U+ UL, U, Ub, UL

ij kIl mn
+ULULURU;)
X [20n (if | KI) + Brmn{ (i | j1) + (il | jK)}]

“22 «5”§}b°[83+2 (Uz‘i’i{ij* Uzjgik)‘i‘% Ulil&{jikl:l
if k

_22 9’5}“[65+Z (UZif;;j* Uij&k)'*‘z Uﬁzﬂjikz
i k ki J

—Zfo’f,-d”[SZJrZ(Uii{ij— Uzjsik)+§ Ultl&gjiklj
i k

Ik

Some obvious simplifications in Eqs. (5.17) and (5.30) may be made by incorporat-

ing the modified Lagrangian matrix sE;’] as follows:

nga]“% UZJEik = 83’*‘% (Uzzf;cj‘ Ungik)-’—% UZI'Q{jikI
J

-2y S5 [s;-+z (Uilly— Usjea) +Y Uity (5.30)
i k Kl

de; ;
=2 ¥ U, en. (5.31)
oa k

6. Energy derivatives for closed-shell SCF wavefunctions

In this section we demonstrate the effectiveness of the correspondence manipula-
tion for the derivative expressions for the simplest and most frequently used case,
the closed-shell SCF wavefunction. Since the closed-shell SCF method may be
treated as a special case of the general open-shell SCF wavefunction, the closed-
shell energy and its derivative expressions may be obtained from the formalism
described in the previous section by setting the coupling constants f, «, and B
to the following values;

1 for i = doubly occupied
fi= { 0 forio (6.1)
or I =vacant
o= {2 for i, j = doubly occupied 62)
0 otherwise
| =1 for i, j=doubly occupied
By = { 0 otherwise. 63)
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6.1. Electronic energy and variational condition for closed-shell SCF wavefunctions
[55]

The electronic energy for the closed-shell SCF wavefunction is expressed as
d.o. d.o.
EY=2 % hy+ ¥ {26l jj)— (|}, (6.4)
i ij

where d.o. designates doubly occupied orbitals. The Lagrangian matrix {5.4) for
the general open-shell RHF wavefunction is related to the Fock matrix for the
closed-shell SCF wavefunction,

E; for i=doubly occupied
g ] (6.5)
0  otherwise,
where
d.o.
Fy=F=hy+ T {205 | ki) = (ik| jk)}. (6.6)
The variational condition for the closed-shell SCF wavefunction becomes
F;=0 for i=doubly occupied, j= virtual. (6.7)

Since the SCF energy is invariant under a unitary transformation within the
occupied space, one normally uses the diagonality of the Fock matrix to define
the canonical HF molecular orbitals. In order to maintain generality, we derive
the energy derivatives for the closed-shell SCF energy without introducing the
diagonality condition of the Fock matrix. If the canonical MQ’s are retained one
may easily obtain these expressions by using the orbital energies instead of the
Fock matrix elements, as we will discuss later.

6.2. Correspondence between closed-shell SCF and MCSCF wavefunctions

An alternative way to derive the closed-shell SCF energy derivatives is to exploit
the MCSCEF formalism described in Sect. 4 by neglecting the terms involving the
derivatives of CI coefficients. Since the density matrices have non-vanishing
values only for the occupied space, one can use this specificity to limit summations
in the closed-shell energy derivative expressions. The correspondence for density
matrices is given as

Yy = 28y (6.8)
and
rijkl = 261‘}'6kl ‘%(5&8,'1 + 5i15jk) (6-9)

for i, j, k, I =doubly occupied.

The additional necessary relationships to derive the energy derivatives for the
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closed-shell SCF wavefunction from the MCSCF formalism are as follows:
X,n =2F,, for m=doubly-occupied, i=all, (6.10)

Y imjn = 28nFyj + 2A,n - for m, n = doubly-occupied, i, j =all (6.11)

imjn
Zimjnko = 28mnAijko + 26moAikjn + 26;10141'mjk
for m, n, 0 = doubly-occupied, i, j, k=all, (6.12)

2 Z Z Z U?m Ujbn U;ozimjnko

im jn ko
all d.o.
=Y Y (UnUpnUint Uin Us Usn + Ui Ui UR) A, (6.13)
itk mn

and

8Y YL Y (UinUn Ui U+ Us Ui Uiy Ui+ Ui U U, U )T i (3] KT)

im jn ko Ip
all d.o.
=43 ¥ (UnUnUi U+ Ui U, UL U,
ijkl mn
+ U?rn U]dm Uzn Ulcn)Aijkla (6'14)
where the A matrix [29, 56] is defined by
Ay = 4(ij | kd) = (ik | j1) = (il jik). (6.15)

It should be noted that the SCF condition (6.7) for the closed-shell wavefunction
is included in the variational condition for the MCSCF wavefunction.

Xim =~ Xmi =0 for m =doubly-occupied, i = virtual. (6.16)

6.3. Energy derivatives for closed-shell SCF wavefunctions

Using correspondence equations defined in the preceding subsections, the first
derivative of the closed-shell SCF energy [57-62] is reformulated from Egs. (5.12)
or (4.3),

oFE cf d.o. " d.o. 5 d.o.
=22 kit X 20 - 92 T SiF; (6.17)
i i i

The second derivative [56, 63] expressions (5.13) or (4.4) may be reduced to

82E cl d.o. d.o. d.o.
=2 % h+ ¥ 2] )" - (i) @} -2 ¥ F°F
da ob i ij i

all d.o. all d.o.

+4Y ¥ (UGF;+ UGFj)+4Y F; ¥ UsUp
i Jj ij k
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all d.o. all d.o.

+4Z. Z % ZI U;'UzlAijkls (6.18)
i
where
d.o.
=hiT Y {2(if| kk)* — (ik | jk)“}. (6.19)

Similarly, the third derivative [46, 64-68] expressions (5.17) or (4.11) become

63Ed d.o. b d.o. b N
=9 h;zic+ 2(ii .oy abe (o s+ abe
=2 LAY 2 )™ = )™
d.o. b all b b
-2 E—,—[S;”—z%‘(sz‘k S+ SiSht S S5
i g
all
+22(Sk S’kl“’-‘Stk‘gI‘Skl_*_'S SISkI)]
all d.o.
+4Z z (U,}Fbc'i'U Fca+U Fab
all alldo b b b
+4Z Z Zk; (U U Fi+ UgUpFi+ Ug Ui Fy)
i
all d.o. all d.o.
+4Z Z v 2 (Uy UkIijkl U Ukle}kl UkIAkaI)
alldo all all d.o. b b
+4Z Z Z Z Z ( Ukm Ufm+ UileCcm Ulm+ UC Ukm Ulm)Az]kl
i j kI m
all d.o. all F all
—22 z [9’“’(——22 U,“Fk,> yfj:( D) U,“F,q)
a}:‘l all
+9’;;C<a—b’—2§ Uﬁ,—ij)] (6.20)
where
d.o.
F&=h+ Y {2(ij] ki)™ — (ik| jk)*}, (6.21)
k
Afa = 4| kD = (ik | jD)* — (il | jk)°, (6.22)
(’)\E all all all d.o.
——’=F5§-+Z UZiij’J"Z UijFlik_f_Z ; UilAijkl- (6-23)
k k k

Finally, the fourth derivative Eq. (5.30) or (4.14) may be reduced to
a4Ecl d.o.
=2 habcd+ 2(iil 7 abed __ il i abed
o ohoeod Z] %[ (i | jj) (i} i) **]
all

d.o.
_2 Z E; [Sgbcd 2 z (Sabc S?}Sd ScdaS Sfi’:zbs k)
7

all

2% (8% PS5+ S Sh + S31Sk)

all

+22(U AL UFUR+URUR )+9,“”°d]
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all d.o.

+4z ) (URUZ+US U+ URUY)F,

alldo all d.o.

+4Y XX ; (U UG+ UFUR +UF U Ay
i j ok

all d.o.

+4 Z Z (UabF[Cd]+ UacF[bd]+ UadF[bc]+ chF[ad]

UbdF[ac]+ Ucd [ab])

all d.o.

+41 ¥ (UGFri+ UGF e+ UGFi + U F
P

all d.o.

+4zz(U UpFi+UsUsFy + Ug UL For+ Ub

+ U UiFi+ U UsFY)

all d.o.
+4Y Y (Ui UsAi+ Us UsAR+ Us Us AL, + Ub
ij ki
+URU lAfkcﬂ"‘ Ui zk]l)
all d.o.

+4 z Z [( U Ujbm Uk1+ Uzbm chm Uk1+ chm U_;lm U I)A;kl

ijk Im

117

¢ ad
#Fy

jl Alkﬂ

U Ui U+ Ui U U+ U, U Ui Al
+ ( U U_;im + Urdm Uj"lm Ukl + U?m U_)cm UkI)AijkI

+ ( U Ufm Ukl + U?m Ujbm Ukl+ Uf)m U]dm

all d.o.
+4Y Y (ULUUL UL+ UL US UL US

ijki mn

+ U?m U]dm Uzn U?n)Aijkl

I)Az]kl]

all d.o. oF.. all oF.
2% % [9’““( iy Uk,FkJ)+9’f}“’( aa” 2y Uk,Fk]>
L)

od
eda a all
+5 5 b -2 Z U Fy

aE all
+y;j.ab( . 4 22 Uk,Fk,)]

where
d.o.
F = hi+ 1 {20 | k)™ = (ike | jk) )

A= 4G | kD)*® — ik | 1) — (il ] jk)**

all d.o.

Fitl= F“b+>:( Ui Fh+ Uy Fs, DYDY (Ut AL+ Ub AL

all d.o.

+Y ¥ (Uy UppAiim+ Uty Ul]AtIkm + Ui, Ur A it

kI m

(6.24)

(6.25)

(6.26)

(6.27)
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6.4. Energy derivative expressions using orbital energies

When the SCF MO’s are determined so that the Fock matrix is diagonal, the
SCF condition is given by

F;=6;¢,, (6.28)

where the quantity ¢ having a single suffix is specifically called an orbital energy.
The Eq. (6.28) is one of the expressions for the variational condition for the
closed-shell SCF wavefunction. It should be noted that Eq. (6.28) defines orbital
energies for virtual orbitals as well as for doubly occupied orbitals.

If we use the condition (6.28), the formulae for the energy derivatives become a
bit simpler. Since the double sum over the terms involving the overlap derivatives
may be replaced to a single sum, the first derivative (6.17) becomes

aECl d.o. d.o. L d.o.
=2 % hi+ T 2] )~ (1) -2 T She. (6.29)
i ij i )

Similarly, the second derivative (6.18) may be written as

aZECI d.o.

d.o. d.o.
_ {l_b+ 1 asyab _ ael evaby ab
P Z h§ % {201 ] jH® = (i) * -2 Z I3 e

all d.o. all d.o.

+4Y & ¥ UsUs+4Y ¥ (ULF5+ UL FS)
i k i

all d.o. all d.o.
+4Z Z % % U;UZlAijkb (6.30)

tJ
Equation {6.30) is given in a symmetric form to aid in the evaluation of the
analytic second derivatives of the closed-shell SCF energy. It should be realized
that there are difficulties in deriving a symmetric expression by directly taking
the derivative of Eq. (6.29). If we explicitly used the fact that the Lagrangian
matrix is diagonal during the differentiation, one must remember that there are
hidden terms involving the off-diagonal elements of the Fock matrix. In this
respect, one must keep all the elements of the Fock matrix and use the condition
for the closed-shell SCF wavefunction in the very last stage to get a final symmetric
expression. In this derivation, therefore, we keep all elements of the derivative
of the Fock matrix, although the following relation holds

ﬂrﬂ_ 5 0¢;

Pl ot (6.31)

By the same token one should note that Eqs. (6.18) and (6.20) avoid the singularity
problem [69] in the evaluation of derivatives of the closed-shell SCF energy even
when the system has degenerate orbitals in the occupied space. This singularity
problem does not appear if one uses the general open-shell formalism described
in Sect. 5, since the diagonality of the Lagrangian and derivative Lagrangian
matrices is never utilized.
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The last term involving the derivatives of the Fock matrix elements in Egs. (6.20)
and (6.24) may be reexpressed by using the conditions (6.28) and (6.31) in the
diagonal form,

all d.o. F all 68 all d.o. » .
—ZZZE/’ ( C‘f 22 Uk,F,q)——zzy::b—MzzybU (6.32)

Using the reductlon (6.32), the third derivative for closed-shell SCF wavefunction
(6.20) becomes

83EC1 do- b be abc
——=2 Y h&+ 20i | jH™ —(ili
sasboc 21 Z 2G| i)™ = (13)
all
-2 z & [S;’,”C—ZZ(S +85Se+SESh

all
+2Z(S SzISkl+SnkaISkI+S SulSkl)]

all d.o.

T4L 2 (UsFy+ UG Fi+ UGFY)

all all d.o.

+4Y Y Y (URULFi+ UL Us Fa+ Use " F?)
R

i1 d.o. all d.o.

+4 Z ) Z (UZUszﬁszr UUUkIAxJkI+ U; UkIAzjkl)
j k

all d.o. all all d.o.
+4 Z Z Z (UaUIlc)m Ulcm+ U,I; U;m Ulam+ U; U;m U?m)Aijkl
i j kI m
< ab 9&; bc ca i
2y (g iy g 081y pea 05
i ac da ab
d.o. all
+4 z z (yab Uc _'_ybc Ua+yca Uy), (633)
where
88 all d.o.
8__ ef — Sig; +Z Z UiiAiina - (6.34)
a
d.o.
ei = hi+ X {2(ii| kk)* — (ik | ik)“}. (6.35)
k

The fourth derivative expression may be reduced in a similar manner.

7. Conclusions

In this paper we have set out in systematic and explicit detail the relationships
between the general expressions for configuration interaction (CI) energy deriva-
tives and those necessarily simpler expressions for self-consistent-field (SCF) and
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multi-configuration (MC) SCF energy derivatives. The correspondences obtained
provide insight into the general structure of the energy derivative formalism.

The present CI energy derivative expressions do not yet take advantage of the
efficiencies arising from the Z-vector method of Handy and Schaefer [70]. The
Z-vector method, of course, has been a critical ingredient in the development of
the most efficient computational implementations to date for CI energy first and
second derivatives [31,33]. The most efficient CI third and fourth derivative
methods will also use the Z-vector approach, unless some new insight is dis-
covered prior to the first computational implementation. Nevertheless, the use
in the present formal paper of the nth order CPHF equations for the nth CI
energy derivative expressions simplifies the necessary mathematical manipula-
tions. Furthermore, the present formalism provides the fundamental starting point
for derivations incorporating the Z-vector approach.

It should be emphasized that analytic first and second derivative methods for
CI, MCSCEF, general open-shell and closed-shell SCF wavefunctions have already
been implemented and are proving to be of great value in the study of molecular
systems of chemical interest [71-75]. Although there exist formal expressions in
operator form for third and fourth energy derivatives for correlated wavefunctions
[76-79], and Hartree-Fock wavefunctions [80], the equations presented here are
more explicit, and perhaps more useful for practical implementations.
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